The Multiple Clinical Applications of Using EchoGo for Global Longitudinal Strain

Oct 29, 2021

Left Ventricular (LV) systolic function is typically assessed using LV ejection fraction (EF) and LV volumes, but there is now a case to be made for considering myocardial strain as an additional metric to predict clinical outcomes.

Particularly as the abilities of artificial intelligence (AI) and machine learning (ML) platforms can be used in clinical practice to automate analysis and standardize measurements, meaning that it eliminates variations between operators. AI is becoming commonplace in echocardiography and medicine in general.

The ML and AI built into EchoGo by Ultromics are already able to produce accurate and precise echo measurements with zero variability between operators through its unique ability to automate the entire analysis using AI in the cloud – for traditional LV EJ measurements, as well as for Global Longitudinal Strain (GLS) and Regional Longitudinal Strain (RLS).

Download our whitepaper for further information about how to use EchoGo Core  for strain to benefit your practice.

 

Clinical Uses of Global Longitudinal Strain (GLS)

Strain measurements with EchoGo are being utilized across a variety of clinical applications  in echocardiography.

The quantitative diagnostic and prognostic indicators produced by EchoGo are so accurate and precise, they have been proven to accurately correlate to a patient’s known outcome better than manual analysis alone [1].

Additionally, where post-acquisition analysis of echocardiograms have largely depended on the practitioner and the analysis package used in the past, EchoGo now eliminates such subjectivity and decreases the processing time required at every step of the clinical post-processing pipeline.

This rapid yet reliable analysis of echocardiograms can be used as a diagnostic tool across a wide range of clinical applications, including cardiotoxicity, heart failure, and even COVID-related complications.

 

Cardiotoxicity and GLS

As more people are able to survive and recover from cancer than ever before, we are seeing a rise in cardiotoxicity cases. A range of chemotherapy regimens and cardio-toxic cancer drugs can lead to side effects related to LV function [2], so regular cardiac monitoring to identify issues earlier is more vital than ever.

The EACVI/ASE/Industry Task Force recommends reporting strain as the default parameter, with additional parameters reported as needed [3], and the British Society of Echocardiography (BSE) suggests measuring GLS in all cardio-oncology cases going forward, as EF alone may not detect subtle, early myocardial injuries [4]. Whereas GLS is a better marker of cardiotoxicity, as it is deemed to be a more sensitive and reproducible measure of LV systolic function [5].

A recent study [6] backs up the effectiveness of GLS as a cardiotoxicity measure, even highlighting its predictive abilities for cancer therapy-related cardiac dysfunction (CTRD).

Cancer patients with normal LVEF and decreased baseline GLS were found to more likely develop CTRD, and patients with baseline GLS abnormalities were shown to have a statistically significant increase in CV-related mortality. Furthermore, a baseline GLS of >-18% was associated with a more than four-fold increase for risk of CTRD.

 

Heart Failure and GLS

GLS can also be used to better predict clinical outcomes in heart failure patients. A 2021 study [7] highlighted not just the association between GLS and Heart Failure (HF) severity, but it also found, during a median follow up period of just over three years, that GLS is predictive of all-cause mortality and cardiac death.

Approximately half of heart failure patients have a left ventricular ejection fraction (LVEF) that is not markedly abnormal, HF with preserved ejection (HFpEF). GLS is a prognostic indicator in HF patients with preserved ejection fraction and can add incremental value to EF in the prediction of adverse outcomes.

This further confirms the findings of a 2019 evidence review [8], which showed GLS to have greater prognostic value than LVEF, and adds incremental value to EF in the prediction of adverse outcomes.

 

COVID-19 and GLS

Along with traditional cardiac applications, GLS has recently been useful as a cardiovascular prognostication tool in patients with COVID-19.

Research discussed as a Late-Breaking Clinical Trial at the ACC.21 Scientific Sessions and  published in The Journal of the American Society of Echocardiography has revealed key insights into the varying international use of cardiac ultrasound on COVID-19 patients, and how AI-derived heart measurements were able to predict COVID-19 mortality. This international effort was supported in partnership by the American Society of Echocardiography (ASE), MedStar Health, University of Chicago and Ultromics.

The study looked at the crossover between COVID-19 and cardiac measurements among 870 patients from 13 medical centers in nine countries. Using Ultromics' software to anonymize echocardiograms, upload them to a cloud platform, and use artificial intelligence to quickly and accurately analyze each exam.

Left ventricular longitudinal strain (LV LS) was independently associated with mortality, while left ventricle ejection fraction (LVEF) was not. Furthermore, fully automated quantification of LVEF and LVLS using AI minimized variability, and AI-based LV analyses were significant predictors of in-hospital and follow-up mortality, whereas manual analyses were not.

 

Using AI for Strain in Your Lab

The clinical applications don’t end there either. EchoGo’s AI-enabled strain analysis could provide additional information that leads to improved accuracy in multiple areas, including:

  • Athletic heart
  • Hypertrophic cardiomyopathies
  • Hypertensive hypertrophy
  • Fabry disease
  • Amyloidosis
  • Myocardial infarction
  • Takotsubo cardiomyopathy
  • Aortic stenosis
  • Duchenne muscular dystrophy

There is mounting evidence supporting the use of strain analysis in clinical analysis, with AI solutions reducing variability and risk of bias, whilst saving time and resources for clinicians in the echo department.

As an additional incentive for cardiologists in the US, myocardial strain imaging is now fully reimbursable using the Category 1 CPT code +93356 – the first echocardiography service to achieve CPT Category 1 status in years.

Ultromics’ vendor-neutral platform, EchoGo, is at the forefront of this revolution. It can be connected through the cloud and set up quickly with no special training, making Ultromics’ strain analysis a simple, efficient, and cost-effective choice for healthcare institutions.

Download our whitepaper for further information about how to use EchoGo Core for strain to benefit your practice.

The Value of Strain. Data from the last two decades shows that GLS is more informative than LVEF, providing a better predictor of death, and allows for better classification of LV dysfunction.  This eBook has been updated with data from 2020 - 2021. Download now.

 

References:

  1. https://www.onlinejase.com/article/S0894-7317(19)30946-0/pdf
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346598/
  3. https://academic.oup.com/ehjcimaging/article/16/1/1/2403449
  4. https://www.jacc.org/doi/10.1016/j.jaccao.2020.10.011
  5. https://www.bsecho.org/common/Uploaded%20files/Events%20and%20marketing/ECHO/ECHO%20112.pdf
  6. https://cardiooncologyjournal.bioBaseline global longitudinal strain predictive of anthracycline-induced cardiotoxicity - Cardio-Oncologymedcentral.com/articles/10.1186/s40959-021-00090-2
  7. https://jamanetwork.com/journals/jamacardiology/article-abstract/2775800
  8. https://www.sciencedirect.com/science/article/pii/S2352906718301398?via%3Dihub

View more related articles

Green Line

New Strain code is first Echo technology to get Medicare reimbursement

As of January 1 2020, cardiologists in the United States can now report and bill for myocardial strain ...

Strain echocardiography: AI overcomes top 5 limitations

As evidence grows to why cardiologists should utilize Strain, it is logical to assess any limits to its ...

What’s to Gain from Strain Imaging

Strain imaging techniques have shown great promise in echocardiography to support early signs of cardiac ...